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Abstract
In advanced technology nodes, the integrated design rule checker (DRC)
is often utilized in place and route tools for fast optimization loops for
power-performance-area. Implementing integrated DRC checkers to
meet the standard of commercial DRC tools demands extensive human
expertise to interpret foundry specifications, analyze layouts, and de-
bug code iteratively. However, this labor-intensive process, requiring
to be repeated by every update of technology nodes, prolongs the turn-
around time of designing circuits. In this paper, we present DRC-Coder,
a multi-agent framework with vision capabilities for automated DRC
code generation. By incorporating vision language models and large lan-
guage models (LLM), DRC-Coder can effectively process textual, visual,
and layout information to perform rule interpretation and coding by
two specialized LLMs. We also design an auto-evaluation function for
LLMs to enable DRC code debugging. Experimental results show that
targeting on a sub-3nm technology node for a state-of-the-art standard
cell layout tool, DRC-Coder achieves perfect F1 score 1.000 in generating
DRC codes for meeting the standard of a commercial DRC tool, highly
outperforming standard prompting methods (F1=0.631). DRC-Coder
generates code for each rule within average four minutes, significantly
accelerating technology advancement and reducing engineering costs.

CCS Concepts
•Hardware→Physical design (EDA); •Computingmethodologies
→ Artificial intelligence.
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1 Introduction
In the era of advanced technology nodes, design rule checking (DRC)
is a critical yet complex step in physical design due to the increasing
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def drc(layout, max_x, max_y):
  drvs=[(x,y,l) for x,y,l in layout 
  if x<=1 or x>=max_x-1]
  ...
return drvs
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Figure 1: DRC checker development process. The flow begins with the
interpretation of foundry-provided description and a layoutwith its DRVs
extracted from a commercial DRC tool report. Then, the flow comes to
coding, alignment checking, and debugging. The proposed LLM-agent
system automates this process, significantly reducing the development
time compared to manual coding.

number of design rules, more complex inter-layer design rules, and
strict patterning rules. Place and route (P&R) tools often require an
integrated DRC checker to ensure manufacturability and enable faster
optimization loops for power-performance-area (PPA) than running
commercial DRC tools every iteration. Implementing an integrated DRC
checker typically takes experienced engineers several weeks, involving
numerous iterations of debugging to extract DRC rules from foundry
documents and ensure the integrated checker meets the standards of
commercial DRC tools, as shown in Figure 1. Furthermore, this process
need to be repeated for each new technology development, which sig-
nificantly cause the long turnaround time of designing circuits. Thus, an
efficient and intelligent methodology for DRC checker code generation
is essential to improve the consistency between the integrated DRC
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checker and the commercial DRC tool and reduce the development time
for new technologies.

Nowadays, large language models (LLMs) [3, 11–14] have demon-
strated remarkable reasoning and code generation capabilities. In ad-
dition, vision language models (VLMs) [1, 12, 22] have been able to ef-
fectively perform multi-modal reasoning. Moreover, LLMs have shown
great potential in solving complex tasks through LLM autonomous agent
(LLM-agent) [8, 17, 18, 21]. For example, LLM-agent can stabilize the
LLM coding process [19] through auto-debugging. In LLM-agent, LLMs
can decompose the task, generate intermediate instructions, and pro-
vide feedback. In addition, LLMs can interact with external environment
like calling utility functions to solve problems. As a result, incorporat-
ing LLM-agent with VLMs and LLMs serves as a good candidate for
DRC interpretation and code generation to enable auto-reasoning and
auto-debugging.

In this work, we proposeDRC-Coder, amulti-agent framework equipped
with vision capability for automated DRC code generation. This ap-
proach can absorb information from multiple modalities, including tex-
tual descriptions, visual illustrations, and layout representations, for
comprehensive design rule interpretation. Our multi-agent framework
breaks down the process into two hierarchical sub-tasks including in-
terpretation and coding, mimicking the human DRC coding process
shown in Figure 1. By assigning two LLMs with different roles to handle
each sub-task, we enhance the LLM reasoning ability and reduce the
potential hallucination of LLMs in solving complex DRC coding with
one agent. Additionally, by integrating our proposed domain-specific
utility functions, DRC-Coder can perform auto-evaluation by executing
the generated code on a layout dataset to get a performance report for
auto-debugging, ensuring the effectiveness of the generated code.

To the best of our knowledge, we are the first work on the auto-
mated DRC code generation problem in EDA. This work differs from
a related work [23], which only focuses on extracting key design rule
components rather than generating completed codes without any hu-
man intervention. To demonstrate the concept, DRC-Coder targets on
the DRC checker for standard cell layout automation [5, 9, 10, 15, 16]
using a sub-3nm technology node. This checker operates on a grid-based
layout format, which represents layout metals as grid coordinates, e.g.,
(8, 0, M0, N5), (5, 4, M0, N9) in Figure 1. This is because routers typically
perform on-track routing in the grid-based fashion.

The contribution can be summarized as follows:

• We present DRC-Coder, the first automated DRC checker code
generation system to accelerate technology migration process
and reduce engineering efforts.

• We develop a novel multi-agent framework with vision capability,
which effectively interprets multi-modal information of design
rules and layouts and enables automated debugging and feedback
mechanisms.

• We decompose DRC code generation into two hierarchical tasks,
interpretation and coding, and allocate them to two specialized
agents to improve LLM reasoning and reliability.

• Wepropose three domain-specific utility functions for LLM-agent,
including visual analysis for design rule and layout and auto-
mated code evaluation.

• Evaluation using sub-3nm technology node show that our DRC-
Coder successfully generates correct codes (F1=1.000) for all de-
sign rules considered in NVCell [15], while standard prompting

produces unsatisfactory results (F1=0.631). Additionally, DRC-
Coder efficiently generates code per rule within four minutes on
average.

DRC-Coder has potential to be extended to other DRC-related prob-
lems including DRC document explanation, test pattern generation, and
design rule optimization. In addition, we hope this work can pave the
way to new research directions for automating complex engineering
tasks in the semiconductor industry.

2 Preliminaries
In this section, we first study the related works for LLM-agent frame-
works. Then, we introduce VLMs and its potential on explaining de-
sign rule images and layouts. Finally, we introduce the grid-based DRC
checker used in the standard cell layout tool.

2.1 LLM-Agent Framework
LLM autonomous agents (LLM-agents) [8, 17, 18, 21] have emerged
as powerful tools that enable LLM to make plans and execute exter-
nal functions based on their reasoning processes. LLM-agents have
demonstrated their effectiveness in various domains. In online shop-
ping scenarios [20], LLM can base on user instruction to search, choose
the product on the website, and reason when to buy the product to
satisfy user requirements. In programming tasks [2], LLM-agents can
generate code, compile and execute it, and iteratively debug based on
compiler and execution feedback. This ability to reason, act, and learn
from feedback illustrates the enhanced problem-solving capabilities
of LLM-agents. In chip designs, LLM-agents are also applied for tasks
like Verilog and layout clustering generation [6, 7], demonstrating their
potential in specialized domains and hardware-related problems.

However, existing frameworks only processes pure text representa-
tions, which are not effective for interpreting circuit layouts and design
rules. Therefore, having visual understanding capabilities in LLM-agent
frameworks is essential. In addition, we should provide a domain-specific
DRC code evaluation function to give meaningful feedback on the code
performance in detecting DRVs. This could help LLM to effectively avoid
false positives and negatives of DRVs produced by the generated code.

2.2 DRC Interpretation Challenges & VLMs
Foundries specify each design rule through concise text description and
visual illustration that often imply complex spatial conditions. For exam-
ple, the description of rule M0.S.1 in Figure 1 has an image, presenting
multiple spacing scenarios S1A1, S1A2 for rules M0.S.1 & M0.S.2, and
a text with abbreviated term PRL. It needs interpretation to know that
the actual condition is: the horizontal space between metals in the M0
layer must be > 1 when the parallel run length (PRL) ≥ −1, where PRL
can be viewed as a vertical space.

Circuit designers must also analyze commercial DRC tool reports
on layouts to uncover implicit conditions not explicitly stated in the
foundry description. Figure 1 reveals that the commercial tool further
checks for a boundary condition: the space between the x-boundary
and metals must be > 1. The above example indicates the challenges of
accurately analyzing foundry descriptions and commercial tool reports
in DRC code generation.

VLM [22] can process images and text to answer the user’s query
based on the image. For example, it can give image explanation or
distinguish the difference between images. Thus, VLM has the potential
to help LLM-Agent to explain design rule images and layouts. Here, we
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Design rule description

Image:

Text:
Space of M0, 
[PRL > -1],  
S1A1 > 1

GPT-4o response:
The rule demands the 
horizontal spacing 
between M0 polygons 
must be greater than 1 
grid unit.

Phi-3 response:
Designer ensure 
that the space 
between M0 and 
S1A1 is greater 
than 1.

(a)

GPT-4o response:
This highlights a 
spacing issue between 
the two metal (2,0) 
and (3,2), as they are 
too close to each other.

Phi-3 response:
(6, 4) and (6, 2) are 
in close proximity 
to each other, as 
they have the same 
x-coordinate and y-
coordinate (4).

(b)

M0.S.1/M0.S.2
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S1A1
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Figure 2: Comparison of the response of two VLMs, GPT-4o and Phi-3, for
(a) the design rule and (b) the layout. In layout image, yellow polygons are
the metals in the M0 layer, black polygons are the DRV region marked
by the commercial DRC tool, and black crosses are the corresponding
DRV locations in grid-based coordinates.

layout: 
[(6, 4, M0, N1), 
(3, 2, M0, B2), 
(6, 2, M0, B2), 
(2, 0, M0, ZN), 
(6, 0, M0, ZN), 
(9, 4, M0, N2)]
max_x: 11
max_y: 5

DRVs:
[((2, 0, M0), 
(3, 2, M0))]

def drc(layout, max_x, max_y):
  drvs = []
  # Boundary check
  for x, y, l, n in layout:
    if x<=1 or x>=max_x-1: 
      drvs.append((x,y,l))
  # Spacing check
  for i in range(len(layout)):
    for j in range(i + 1, len(layout)):
      x1, y1, l1, n1 = layout[i]
      x2, y2, l2, n2 = layout[j]
      if(abs(x1-x2)<=1 and abs(y1-y2)<=1)or
        (abs(x1-x2)==1 and abs(y1-y2)==2): 
        drvs.append(((x1,y1,l1),(x2,y2,l2)))
return drvs

Figure 3: A grid-based DRC code for design rule M0.S.1.

use two state-of-the-art VLMs, including Phi-3 [1] and GPT-4o [12], to
perform image explanation on a design rule and a layout. The result
is shown in Figure 2. GPT-4o can generate meaningful responses. On
the other hands, Phi-3 produces unsatisfied responses, where the space
is not between M0 and S1A1, and the DRVs is not in (6, 4) and (6, 2).
Based on this experiment, we observe that the VLM, especially GPT-
4o, can help in explaining complex design rules and layouts. Thus, we
integrate this VLM with LLM-agents to process textual, visual, and
layout information, enabling effective rule interpretation for DRC code
generation.

2.3 Grid-based DRC Checker
In our evaluation, we use NVCell [15] as our target standard cell layout
tool. NVCell employs a grid-based DRC checker to rapidly obtain layout
performance. For example, it can complete DRC for a cell with 22 devices
in 0.05 seconds, while the commercial DRC tool takes 215 seconds. In
this paper, our goal is to generate a new grid-based DRC checker for
a sub-3nm technology node. Figure 3 demonstrates an example of the
grid-based DRC code for design rule M0.S.1 (Figure 2(a)). The core of
the checker is the drc function, which takes three parameters:

DRVs in commercial 
DRC tool report: 
DRV1 (1580 1710), 
(1780 1410) (1780 
1670), (1580 1970)
DRV2 …

Grid-based DRVs:
DRV1 ((3, 1, M0), 
(4, 3, M0))
DRV2 ((4, 3, M0), 
(5, 1, M0))

DRV1 DRV2

Extracted layout & DRVs 
grid-based visualization from 
commercial DRC tool report

Figure 4: Conversion from DRVs in the commercial DRC tool report to
grid-basedDRVs. DRV locations in the commercial tool report aremarked
by black polygons, each defined by four points with x and y coordinates.
Our grid-based approach identifies the layout components intersecting
these polygons and represents DRVs using the grid coordinates of these
components.

• layout: A list of tuples. Each tuple (𝑥,𝑦, layer, net) denotes the
grid coordinate (𝑥,𝑦), metal layer, and net name of a layout
component. Note that we use the same coordinate system for
all layers, as 𝑥 and 𝑦 are horizontal and vertical coordinates,
respectively.

• max_x and max_y: The maximum grid coordinates of the layout
in 𝑥 and 𝑦 directions.

This drc function implements two checks:

(1) Boundary check: Identifies components at or beyond the layout
edges (𝑥 ≤ 1 or 𝑥 ≥ max_x − 1).

(2) Spacing check: Detects violations between pairs of components
based on their relative positions.

The function returns a list of DRVs, where each DRV is a tuple that
indicates the violating components. In the example, the output is [((2,
0, M0), (3, 2, M0))], which indicates a spacing violation between two
components (2, 0, M0) and (3, 2, M0).

3 Data Preparation
To evaluate the generated DRC code, we create a dataset composing of
standard cell layouts and their DRC reports. The dataset preparation
process has two steps: layout generation and DRC report preprocessing.

3.1 Layout Generation
We produce 207 different standard cell layouts using NVCell by mutating
the routing behaviors without DRC fixing. This approach ensures a wide
range of DRV scenarios for evaluation. These layouts are represented in
a grid format used in the grid-based DRC checker stated in Section 2.3.

3.2 DRC Report Preprocessing
The preprocessing stage converts physical coordinate-based DRC re-
ports from the commercial tool into a grid-based representation that
aligns with the output format of our grid-based DRC checker. The pre-
processing involves the following steps:

(1) Produce the DRC reports of layouts by running the commercial
DRC tool. These reports use polygons to mark DRV locations in
physical coordinates.

(2) Identify the layout components that intersect with the DRV poly-
gons reported by the commercial DRC tool.
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Planner

Agent group chat (two LLMs)

Foundry rule analysis

Layout DRV analysis

Layout Golden grid-based DRVsTechnology document

DRC code evaluationRule condition DRC code

DRC code

Correct
code?

Yes

No

LLM agent Tool functionDesign rule Prompting Initial prompt
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Figure 5: Overview of DRC-Coder. Planner first interprets the input design rule by executing analysis tool functions. Programmer receives the
rule condition to generate code. Finally, DRC code evaluation is executed to provide code performance feedback. Planner receives the feedback to
perform re-reasoning, and Programmer performs debugging until generating the correct code.

Task: Develop a Python function for DRC that identifies DRVs in layout data.

Requirements:

1. Function Definition: `drc(layout, max_x, max_y)`:

    - Input: A list of tuples `layout` and two integers max_x and max_y

    - Output: A list of tuples, each tuple representing a DRV. 

2. DRV Detection: Happen due to interactions between metals or segments 

and cell boundary

3. Output Alignment: Ensure the output aligns with golden DRV locations 

converted from the commercial DRC tool

Steps:

1. Analyze the provided layout examples and golden DRV locations 

2. Infer the design rule logic based on the examples 

3. Implement and evaluate drc() function 

Target Design Rule Description: [DR Dependent Input] 

Rule name: M0.S.1

Description: Space of M0, [PRL > -1], S1A1 > 1 in grid coordinates.

Layout Examples: [DR Dependent Input]

[Example 1] Design_name: IOA1

[Layout] 

(6, 4, M0, N1), (3, 2, M0, B2), (6, 2, M0, B2), (2, 0, M0, ZN). (6, 0, M0, ZN), 

(9, 4, M0, N2)

[DRV Locations] 

((2, 0, M0), (3, 2, M0))

[Example 2] Design_name: AN2

…

Figure 6: Initial prompt to DRC-Coder. The part of design rule (DR)
dependent inputs is dynamically changed according to different target
design rules.

Finally, we view the grid-based coordinates of these layout compo-
nents as the ground-truth of DRVs in our evaluation process. This grid-
based DRV report can precisely capture layout components involved in
each DRV. Figure 4 illustrates this conversion process, demonstrating
how polygon-based DRVs from the commercial tool reports are trans-
formed into our grid-based representations. For the DRV interpretation
in DRC-Coder, we also construct the grid-based visualization of each
layout along with its DRVs, as shown in the examples in Figure 1, 2(b),
and 4.

4 DRC-Coder
Our approach, DRC-Coder, generates DRC code on a rule-by-rule ba-
sis. To make DRC-Coder more applicable when facing new technology
node, our code generation is under a zero-shot setting, i.e., no example
codes are provided during generation. The overall flow of DRC-Coder
is illustrated in Figure 5. The core of this system consists of two LLM
agents operating in a group chat manner: (1) Planner: Responsible for

interpreting design rule conditions in grid domain. (2) Programmer:
Translate the design rule condition into the executable code. These
agents are powered by the general LLMs (GPT-4o [12]) but are assigned
with different roles for the DRC coding process. This multi-agent ap-
proach decomposes the DRC process into planning and coding phases,
allowing each agent to focus on its specialized task to enhance overall
system performance.

To process image inputs and evaluate DRC code, DRC-Coder sets
three specialized tool functions for agents to use: (1) Foundry Rule
Analysis, (2) Layout DRV Analysis, and (3) DRC Code Evaluation. These
tools provides the agents the specialized image analysis and evaluation
capabilities throughout the code generation process.

The workflow begins with an input design rule, which goes through
Prompting stage to produce an initial prompt to Planner. Then, Planner
and Programmer work together to generate the DRC checker code
with the help of tool functions. Finally, the code generation undergoes
an iterative auto-debugging process until the DRC reports are aligned
with ground truth DRVs of the commercial DRC tool. The example
of the workflow is shown in Figure 11. In the following, we detail all
components in DRC-Coder.

4.1 Prompting
Given the input design rule, this stage constructs a structured initial
prompt, as illustrated in Figure 6, to the Planner. The components of
this prompt is split into the fix part and the design rule (DR) dependent
part. The fix part contains: (1) A task definition for developing a Python
function to identify DRVs in layout data. (2) The requirements that
formally states the input and output format of the function. (3) A step-
by-step guide that decomposes coding problem into subtasks for the
Planner and Programmer.

The DR dependent part has: (1) The target design rule description
from foundry document. (2) Layout examples with metal information
and corresponding DRV locations to provide concrete cases for analysis.
Note that we randomly select two layout examples that has the target
DRVs from our dataset to construct the prompt. Additionally, the DR
dependent part is dynamically adjusted based on the target design rule.

4.2 Planner
Planner is an LLM agent focusing on interpreting foundry-provided
design rule descriptions and layouts to generate corresponding design
rule conditions in the grid domain. These foundry-provided descriptions
are often concise and multi-modal, combining text and images, which
makes them challenging to use directly for coding purposes. To help
Planner interpret the image information, we design two utility functions
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Input: 

 - Question from Planner: Explain design rule M0.S.1 in detail

Prompt to VLM:

Image:

Text: You are an image-agent to help deriving DRC code. 

Design rule description: Space of M0, [PRL > -1],  S1A1 > 1

DRV could be the interaction between metals or between cell boundary. 

You can summarize the design rule between polygons in the image. 

Question of Planner: Explain the design rule M0.S.1 in detail.

Output:

Identified Spacings in the Figure: 

    - S1A1: horizontal, PRL: vertical direction

DRC Conditions for Each Spacing

    - Horizontal Direction Spacing S1A1:

        Check the spacing between M0 blocks where spacing is denoted by 

        S1A1. Ensure spacing is greater than 1 grid unit.

    - Vertical Parallel Run Length (PRL):

        Check parallel run lengths indicated by purple arrows. Ensure these 

        metrics are greater than 0 grid units.

M0.S.1/M0.S.2

S1A2

S1A1

M0
M0

M0PRL

Figure 7: The usage and example response of Foundry Rule Analysis.
This function uses a VLM to interpret design rule descriptions, including
text and image inputs, to produce a detailed analysis of the design rule.

for the Planner to employ: Foundry Rule Analysis and Layout DRV Anal-
ysis. In each round of interpretation, Planner can control whether to call
each of functions to get more information. If calling functions, Planner
receives the response of tool functions to automatically transform all in-
formation into grid-based design rule conditions. In the example shown
in Figure 11, design rule conditions generated by Planner contain the
analysis of DRVs and the plans to write the code, including boundary
and spacing checks.

Foundry Rule Analysis. This function processes a specific question
from Planner regarding DRVs. Then, a VLM is called to interpret design
rule descriptions (combining text and images) in the foundry document
and provides a answer to the input question. As shown in Figure 7,
the function analyzes the provided image, identifying target spacing
directions and generating a detailed response for DRC conditions for
each spacing requirement. This automated interpretation helps Planner
to understand complex design rules presented in multi-modal formats,
facilitating the translation of foundry specifications into precise and
grid-based conditions that can be used for DRC code generation.

Layout DRV Analysis. This function takes two inputs: a question
from Planner regarding design rules and layout, and a list of cell names
indicating the layouts to be examined. It then utilizes a VLM (GPT-4o)
to interpret the specified layout images. The VLM identifies key ele-
ments such as metal regions and DRV locations within the provided
grid coordinates. As demonstrated in Figure 8, the function generates
a comprehensive response that addresses Planner’s query, detailing
the reasons for detected DRVs, including specific coordinates and de-
scriptions of issues like spacing problems or boundary violations. This

Input: 
 - Question from Planner: Get the reason of DRVs
 - List of cell names: [IOA1, AN2]

Prompt to VLM:
Image:

Text: You are an image-agent to help deriving the code for DRC. The black 
polygons are the DRV regions, the other polygons are layout components. The 
black cross is the grid-base DRV location corresponding to the components. 
Question from Planner: Get the reason of DRVs

Output:
### Cell IOA1
The DRV at (3, 2, M0): The black polygon is formed between the metals at (3, 
2) and (2, 0), showing a diagonal interaction. This highlights a spacing issue 
between two metals, too close to each other.

### Cell AN2
The DRV at (1, 0, M0): The black polygon highlights proximity of  the metal 
at (1, 0) to the left boundary of the cell. This indicates the metal is too close to 
cell boundary, causing a violation.

IOA1 AN2

Figure 8: The usage and example response of Layout DRV Analysis. This
function utilizes a VLM to interpret layout images of input cells, identify
their DRVs, and provide detailed grid-based explanations on DRVs.

automated and context analysis enhances Planner’s ability to generate
more accurate grid-based design rule conditions.

4.3 Programmer
Programmer is an LLM agent responsible for translating the grid-based
design rule conditions, produced by the Planner, into executable DRC
code. To understand the generated code performance, we design a tool
function, DRC Code Evaluation. The example in Figure 11 shows the
generated DRC code.

DRC Code Evaluation. This function inputs the generated code and
outputs the performance report of the code. In detail, this function ex-
ecutes our generated code on cell layouts in the dataset and directly
compares the code output with the golden DRC reports of the commer-
cial tool. The generated DRC code must correctly classify layout grids as
either DRC-compliant or DRC-violating based on each design rule. The
dataset of standard cell layouts used for evaluation is inherently imbal-
anced, with DRC-violating grids being significantly less than compliant
ones. Thus, to evaluate performance, we measure Precision, Recall, and
F1 score between the DRVs detected by the commercial tool and our
generated code. These metrics are particularly suitable for imbalanced
datasets, focusing on the correct identification of the minority class
(DRC-violating). Higher values in these metrics indicate better DRC
code. Note that we serve F1 score as our primary metric since it offers a
comprehensive view of effectiveness by balancing both precision and
recall. In this way, we can examine whether our code correctly repli-
cates the results of the commercial tool. Finally, this function produces
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Input:
 - Generated DRC code: def drc(layout, max_x, max_y): …

Output:
Average performance of our generated code across 207 cell layouts:
Precision: 0.6570, Recall: 0.4894, F1 Score: 0.5540
### The false negatives (missed DRV locations):
DRV #1 at (2, 2, M0) in cell SDFQ:
- Distance between DRV points (2, 2) and left boundary: 2 in x.
DRV #2 at (11, 2, M0) in cell XOR2:
- Distance between DRV points (11, 2) and right boundary: 2 in x.
DRV #3 at (1, 2, M0) in cell XNR3:
- This DRV comes from the violation relation ((1, 0, M0), (1, 2, M0))            
  Distance between DRV points (1, 0) and (1, 2): 0 in x and 2 in y

###There is no false positives (incorrectly identified DRV locations)

We need to filter out the false negatives and false positives.
You can choose the following action:
(1) Use the x, y distance between DRVs to modify current DRC condition.
(2) If performance didn’t improve compared to previous round, call Layout 

DRV Analysis by choosing two designs and specify your question in detail. 
You can ask what's the observation around detailed locations.

Figure 9: The usage and example response of DRC Code Evaluation. By
executing the input generated code on the layout dataset, this function
compares the code outputs with golden grid-based DRVs converted from
commercial tool reports. Then, it provides a performance report for our
two LLM agents.

a performance report for Planner to do reasoning and for Programmer
to conduct debugging.

Figure 9 shows the example of this function. In the performance
report, we have the average performance and summarize the false nega-
tives and false positives. For each false negatives (positives) DRV loca-
tion, we first classify it into boundary violation or spacing violation. For
each DRV of spacing violation (boundary violation), we compute the x
and y distances between two points (the point to the boundary). Finally,
we report the DRVs with unique x, y distances because they may come
from different design rule conditions. We cannot report all the DRVs
due to context length limitation of LLMs and the potential hallucination
problem of LLMs triggered by long contexts.

At the end of the report, we provide the goal and the available actions
that agents can take. Note that Planner has freedom to call Layout DRV
Analysis in the next round of generation to know more about DRVs.
For example, Planner could ask about the DRV scenario around specific
grid locations according to the report.

5 Experimental Results
In this section, we first detail the experiment setup. Then, we present
the evaluation results and an abalation study of DRC-Coder. Finally, we
introduce a detailed workflow of DRC-Coder.

5.1 Experiment Setup
Development platform. DRC-Coder is developed under Python lan-
guage based on themulti-agent system development toolkit AutoGen [18].
Planner and Programmer agents, along with the VLMs embedded in
two tool functions, are powered by GPT-4o [12] using the OpenAI API
version 2024-05-13. This means that our DRC-Coder is training-free

Layout and its DRVsDescription

M0.S.1/M0.S.2

Rule M0.S.2

Rule VIA0.S.1

Space of M0 
in horizontal 
direction, 
S1A2 > 2

Space of VIA0,
S1 > 1

VIA0.S.1

Rule M2.S.1

S1

M2

M2

PRL
Space of M2 to 
M2_line_end,
S1 > 1,
[PRL > -1]

M2.S.1

S1A2

S1A1

M0
M0

M0PRL

S1
VIA0

VIA0

VIA1 M2 enclosure of VIA1

Rule M0.S.1

M0.S.1/M0.S.2

S1A2

S1A1

M0
M0

M0PRL

Space of M0, 
[PRL > -1],  
S1A1 > 1

Figure 10: Illustration of selected design rules for DRC-Coder evaluation.
(1) Rule M0.S.1: Spacing between M0 components, considering both verti-
cal and horizontal direction. (2) Rule M0.S.2: Horizontal spacing between
M0 components. (3) Rule VIA0.S.1: Spacing between VIA0metals. (4) Rule
M2.S.1: Interaction between VIA1 and M2 components, considering M2
enclosure of VIA1.

because we do not perform any finetuning on the LLMs.

Evaluation method. We evaluate DRC-Coder’s capability to develop
DRC checker codes for a sub-3nm technology node, specifically for
NVCell [5, 15]. Our evaluation dataset, generated as described in Section
3, comprises 207 standard cell layouts and covers 7 distinct design rules,
as illustrated in Table 1. These rules contain all primary DRV types that
could occur and are considered in NVCell’s grid-based routing engine. In
addition, they cover metal and via layers from M0 to M2, which include
all available routing layers in standard cell layout tools [9, 10, 16].

Figure 10 illustrates four selected design rules. Rule M0.S.1 demon-
strates spacing for M0 components, while rule M0.S.2 shows horizontal
spacing with distinct spacing parameters. VIA0.S.1 shows spacing con-
straints between VIA0 metals. Rule M2.S.1 represents more complex
multi-layer interactions, addressing spacing between VIA1 and M2 com-
ponents. This rule introduces the concept of M2 enclosure, which is the
M2 metal that extends beyond the VIA1 boundaries, as shown by the
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Table 1: Performance evaluation of DRC code generation using standard prompting and our DRC-Coder with GPT-4o [12] and Llama3 [4] across
seven design rules. The table presents Precision (P), Recall (R), and F1 score (F) for each method. For our DRC-Coder using GPT-4o, the number of
debugging iterations and runtime in seconds are also included.

LLM Llama3 GPT-4o

Rules Standard prompting DRC-Coder Standard prompting DRC-Coder
P R F P R F P R F P R F #iteration Runtime (sec)

M0.S.1 0.841 0.710 0.745 0.795 1.000 0.870 0.789 0.527 0.620 1.000 1.000 1.000 3 325
M0.S.2 0.657 0.489 0.554 0.696 0.817 0.722 0.657 0.489 0.554 1.000 1.000 1.000 2 121
VIA0.S.1 0.646 0.403 0.483 1.000 1.000 1.000 0.659 1.000 0.769 1.000 1.000 1.000 2 133
M1.S.1 0.540 1.000 0.680 1.000 1.000 1.000 0.645 0.402 0.482 1.000 1.000 1.000 3 354
M1.S.2 0.000 0.000 0.000 0.151 0.583 0.234 0.582 0.450 0.490 1.000 1.000 1.000 2 152
VIA1.S.1 0.075 0.725 0.133 0.149 1.000 0.255 1.000 1.000 1.000 1.000 1.000 1.000 1 45
M2.S.1 0.220 1.000 0.356 1.000 1.000 1.000 0.500 0.500 0.500 1.000 1.000 1.000 3 343
Average 0.425 0.618 0.421 0.684 0.914 0.726 0.690 0.624 0.631 1.000 1.000 1.000 2.3 210

light purple areas surrounding blue VIA squares in Figure 10. M2 enclo-
sure is essential for ensuring reliable connections and manufacturbility
in advanced chip designs.

While not illustrated, M1.S.1 and M1.S.2 are similar to M0.S.1 and
M0.S.2 respectively, but with different spacing requirements in vertical
directions. VIA1.S.1 is analogous to VIA0.S.1 but with distinct spacing
parameters. This diverse rule set enables a comprehensive evaluation of
DRC-Coder’s capability to handle both single-layer spacing rules and
complex multi-layer interactions.

To quantify DRC-Coder’s performance, we compare the generated
code output with the golden DRC reports of the commercial tool and
employ three metrics: Precision, Recall, and F1 score as detailed in Sec-
tion 4.3, where F1 score is our primary metric.

Baselines.We are the first work focusing on DRC coding generation
problem and use LLM-Agent-based method to solve it. Thus, the main
baseline is set to the standard prompting, which using prompt in Figure 6
to directly generate the code without tool function feedback. DRC-
Coder is a multi-agent framework with multi-modal vision capability.
We set two variants of DRC-Coder as other baselines for abalation
study: (1) single-agent with vision capability: Only use Programmer to
directly generate code and (2) multi-agent without vision capability:
Keep Planner and Programmer but without Foundry Rule and Layout
DRV Analysis.

5.2 Results of DRC-Coder
The evaluation results are shown in Table 1. Our DRC-Coder using GPT-
4o [12], employing a multi-agent architecture with vision capability,
achieves perfect scores (1.000) in Precision, Recall, and F1 score for all
seven design rules evaluated. This consistent performance across differ-
ent rule types highlights the robustness of our approach in interpreting
and translating complex design rules into accurate DRC code.

In contrast, the standard prompting method shows unsatisfied perfor-
mance across different design rules with an average F1 of 0.631. While
it performs adequately for some rules, e.g., VIA1, it struggles with oth-
ers, particularly in terms of Recall and F1 scores. This inconsistency
shows the limitations of conventional prompting when dealing with the
intricate DRC.

In summary, DRC-Coder achieves 37% higher F1 score. In addition,
DRC-Coder can complete the coding within an average 2.3 iterations of

Table 2: Performance evaluation of DRC code generation using two DRC-
Coder variants: multi-agent without vision capability and single-agent
with vision capability using GPT-4o. P: Precision, R: Recall, F: F1 score

LLM GPT-4o

Design rules
Multi-agent Single-agent

w/o vision capability w/ vision capability
P R F P R F

M0.S.1 0.951 0.657 0.747 0.944 0.965 0.946
M0.S.2 0.929 1.000 0.956 0.530 1.000 0.661
VIA0.S.1 1.000 1.000 1.000 0.660 1.000 0.769
M1.S.1 0.848 0.880 0.844 1.000 1.000 1.000
M1.S.2 1.000 1.000 1.000 1.000 1.000 1.000
VIA1.S.1 1.000 1.000 1.000 1.000 1.000 1.000
M2.S.1 1.000 1.000 1.000 1.000 1.000 1.000
Average 0.961 0.934 0.935 0.876 0.995 0.911

debugging, taking 210 seconds of runtime. Thus, it can greatly accelerate
the DRC coding process, where a designer easily takes weeks to write a
correct DRC code.

We further demonstrate the results using an open-sourced LLM
Llama3 [4]. Our framework also can achieve improvement with 42.2%
compared to the standard prompting. However, it cannot perform as
effective as GPT-4o, indicating GPT-4o has a more powerful agent capa-
bility in this domain-specific DRC coding problem.

5.3 Abalation Study
The abalation study results are shown in Table 2. This experiment can
evaluate the performance contribution of the visual capability and the
multi-agent setting in DRC-Coder. Two variants of DRC-Coder demon-
strate improved performance over standard prompting (first column in
Table 1) with 32.5% and 30.7% higher F1 score, respectively. However,
they fall short of the full DRC-Coder (second column in Table 1) in some
design rules. These results indicate the importance of visual capability
in interpreting certain design rules and the advantage of our multi-agent
setting in task decomposition of the DRC coding task.
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Initial prompt

Planner

Tool call: 
FoundryRuleAnalysis
Input:
 - Question: Explain the 
design rule M0.S.1
Output: 
Refers to output in 
Figure 7.

Tool call: 
LayoutDRVAnalysis
Input:
 - Question: Explain 
layouts & DRV locations
 - Cells: [AN2, IOA2]
Output: 
Refers to output in 
Figure 8.

1 2

#Analysis of DRVs
Based on layout examples 
and the detailed 
explanation of the design 
rule, we can infer the 
conditions for DRVs:
Space between M0 metals 
in horizontal direction 
satisfies:
1. PRL > 2,  2. S1A1 > 1
Metals should not be too 
close to the x-boundary

#Plan to write DRC code
1. Boundary DRV Check:
   - Iterate M0 metals and 
check their proximity to 
the x boundary. 

2. Spacing DRV Check:
   - Iterate pairs of M0 
metals and check their 
horizontal spacing to see if 
the spacing is less than the 
PRL or S1A1.

Programmer

def drc(layout, ...):
for each metal:
 check x<=2

for pair of metal:
 check y1==y2 and 
          |x1-x2|<=2
 check |y1-y2|<=1 and 
          |x1-x2|<=2
   

3

Tool call: DRCCodeEval
Input:
 - Code: def drc …
Output: 
P: 0.74, R: 0.57, F: 0.61
# False negatives:
DRV1 (11,2,M0) in XOR2:
- Dist. between (11,2) and 
right boundary: 1 in x.  ...

# False positives:
DRV1 (2,0,M0) in XOR2:
- Dist. between (2,0) and 
left boundary: 2 in x.  …

Planner

#Plan for Improvement
1. Adjust the boundary 
rule to consider both the 
left and right boundaries 
with 1 unit
2. Refine spacing 
conditions to avoid false 
positives by considering 
the specific distances that 
caused the false positives 
x=2

Programmer

def drc(layout, ...):
for each metal: 
 check x<=1 or
         x>=max_x-1

for pair of metal:
 check |y1-y2|<=2 and 
          |x1-x2|<=1
 check |y1-y2|<=1 and 
          |x1-x2|<=2
   

Tool call: DRCCodeEval
Input:
 - Code: def drc …
Output: 
P: 0.86, R: 1.00, F: 0.92
# No false negatives
# False positives:
DRV1 (4,0,M0) in XOR2:
- Dist. between (4,0) and 
(6,0): 2 in x and 0 in y
DRV2 (4,2,M0) in SDF:
- Dist. between (4,2) and 
(4,4): 0 in x and 2 in y

4

5

6

7

8

Planner

#Plan for Improvement
Refine the conditions to 
avoid false positives. Do 
not consider metals: 
1. put in the same x 
coordinates
2. x distance equals to 2

9

Programmer

def drc(layout, ...):
for each metal: 
 check x<=1 or
         x>=max_x-1

for pair of metal:
 check |y1-y2|<=2 and 
          |x1-x2|==1
 check |y1-y2|<=1 and 
          |x1-x2|<2
   

Tool call: DRCCodeEval
Input:
 - Code: def drc …
Output: 
P: 1.00, R: 1.00, F: 1.00
The code is perfect! You 
can report TERMINATE 
to stop the process.

10

11

Terminate

Planner

Figure 11: Workflow of DRC-Coder generating and refining DRC code for design rule M0.S.1. The process illustrates the iterative collaboration
between Planner and Programmer, utilizing various tool calls (FoundryRuleAnalysis, LayoutDRVAnalysis, DRCCodeEval) to progressively improve
code performance and eliminate false positives and negatives. Note that pseudo code is used in the image to represent the generated code to reduce
the context length.

5.4 Case Study of DRC-Coder Workflow
This section presents a detailed case study of DRC-Coder’s workflow
for generating and refining DRC code for design rule M0.S.1. Figure 11
provides a step-by-step visualization of this process.

The workflow begins with an initial prompt, which triggers the Plan-
ner agent to analyze the design rule using FoundryRuleAnalysis and
LayoutDRVAnalysis tool functions (steps 1-2). These analyses provide
insights into the rule specifications and potential DRV conditions. Based
on this information, Planner summarizes the DRV analysis and gener-
ate a plan for writing the DRC code (step 3), including the boundary
and spacing DRV checking. Then, Programmer implements the DRC
code (step 4) and call the DRCCodeEval tool (step 5) to get the code
performance and reveal areas for improvement.

In the next iteration of code generation, Planner develops a plan for
refinement (step 6), indicating how to modify the boundary rules and
spacing conditions. This guides Programmer to make code adjustments
(step 7). This iterative process continues, with each cycle improving the
code performance and decrease the false negatives and positives (steps
8-10). Note that in step 8, there is no false negatives for the code. Finally,
when the DRCCodeEval indicates the code is correct, Planner send the
TERMINATE signal to end the code generation process.

This demonstration shows that Planner can generate effective plans
for modifying design rule conditions. Also, Programmer can follow the
plan and combine its last generated code to generate an improved one.

6 Conclusion
In this work, we introduce DRC-Coder, the first automated DRC code
generation framework leveraging a multi-agent system with vision
capabilities. Our approach decomposes the DRC coding process into in-
terpretation and programming tasks, utilizing two LLMs and integrating
VLMs to effectively process multi-modal information including textual

descriptions, visual illustrations, and layout representations. In addition,
we develop three specialized tool functions for LLMs: foundry rule anal-
ysis, layout DRV analysis, and DRC code evaluation. These functions
enable automated reasoning and debugging, significantly robustify the
code generation process.

Our evaluation demonstrates that DRC-Coder significantly outper-
forms standard prompting techniques, achieving perfect F1 scores of
1.000 across all design rules considered in a standard cell layout tool
for a sub-3nm technology node. This indicates that the generated DRC
checker successfully replicates the report of the commercial tool, pro-
viding signoff DRC to the layout tool. Moreover, DRC-Coder drastically
reduces the coding time from days of manual effort an average of four
minutes per design rule, highly accelerating technology migration and
reducing engineering costs. Note that DRC-Coder can be generalized to
generate codes using other programming language, e.g., C++, for more
efficient DRC.

Looking ahead, DRC-Coder can be extended to a wide range of DRC-
related applications. For example, we can use our image analysis func-
tions and include human interactive feedback in each Planner’s re-
sponse to realize a DRC-explanation chatbot. We also aim to extend our
framework to other areas of physical design that require multi-modal
reasoning. Finally, as DRC-Coder unlocks LLM’s capability for a com-
plex engineering task in EDA, we hope to stimulate future research on
developing LLM-agents in this field.
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